organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N-Dimethylacetamide-4-iodobenzenesulfonic acid-water (1/1/1)

Rui Liu, Yu-Feng Li, Wei Luo, Jin Chang and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Naniing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 19 September 2008; accepted 10 November 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.019 Å; R factor = 0.063; wR factor = 0.162; data-to-parameter ratio = 8.7.

In the title compound, $C_6H_5IO_3S \cdot C_4H_9NO \cdot H_2O$, N,Ndimethylacetamide and 4-iodobenzenesulfonic acidmolecules are linked by an intramolecular $C-H \cdots O$ hydrogen bond. In the crystal structure, intermolecular $O-H \cdots O, O-H \cdots I$ and C-H···O hydrogen bonds link the molecules.

Related literature

For a related structure, see: Wu et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_6H_5IO_3S \cdot C_4H_9NO \cdot H_2O$ $M_r = 389.21$ Orthorhombic, Pca21 a = 14.173 (3) Å b = 7.7480 (15) Åc = 13.272 (3) Å

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.539, T_{\max} = 0.799$ 1490 measured reflections

V = 1457.4 (5) Å³ Z = 4Mo Ka radiation $\mu = 2.35 \text{ mm}^{-1}$ T = 294 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$

1490 independent reflections 1096 reflections with $I > 2\sigma(I)$ 3 standard reflections frequency: 120 min intensity decay: none

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	H atoms treated by a mixture of
$wR(F^2) = 0.162$	independent and constrained
S = 1.07	refinement
1490 reflections	$\Delta \rho_{\rm max} = 1.53 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -2.42 \text{ e } \text{\AA}^{-3}$
4 restraints	Absolute structure: Flack (1983), 7
	Friedel pairs
	Flack parameter: 0.13 (10)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$O1W-H1WA\cdots O2^{i}$	0.87 (13)	1.97 (15)	2.765 (16)	151 (14)
$O1W-H1WB\cdots O3^{ii}$	0.94 (10)	1.85 (15)	2.657 (16)	143 (17)
$O2-H2A\cdots I1^{iii}$	0.85	2.57	3.208 (16)	133
$C1-H1B\cdots O3^{iv}$	0.93	2.46	3.378 (15)	168
$C5-H5A\cdotsO1^{v}$	0.93	2.55	3.192 (17)	126
C9-H9A···O3	0.96	2.56	3.48 (2)	161

Symmetry codes: (i) $x + \frac{1}{2}$, -y + 1, z - 1; (ii) x + 1, y - 1, z - 1; (iii) $-x + \frac{1}{2}$, y + 1, $z + \frac{1}{2}$; (iv) x, y - 1, z; (v) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick. 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2535).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wu, J. S., Chi, C. Y., Wang, X. H., Li, J., Zhao, X. J. & Wang, F. S. (2000). Synth. Commun. 30, 4293-4298.

supplementary materials

Acta Cryst. (2008). E64, o2376 [doi:10.1107/S160053680803701X]

N,N-Dimethylacetamide-4-iodobenzenesulfonic acid-water (1/1/1)

R. Liu, Y.-F. Li, W. Luo, J. Chang and H.-J. Zhu

Comment

The crystal structure of the title compound with a comb-like structure illustrate the three different components linked by weak interactions based on hydrogen bonds. Furthermore, the hydrolysis mechanism of the innersalt, which was formed from 4-iodobenzenesulfonyl chloride and N,N-dimethylacetamide, was understood (Wu *et al.*, 2000). Meanwhile, the complicated hydrolysate was finally confirmed. We report herein its crystal structure.

The asymmetric unit of the title compound contains N,N-dimethylacetamide, 4-iodobenzenesulfonic acid and water molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Ring A (C1-C6) is, of course, planar. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two nonplanar five-membered rings B (S/O1/C2/C3/H2B) and C (O4/N1/C8/C10/H8A), having envelope conformations with O1 and H8A atoms displaced by 0.193 (3) and 0.194 (3) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular O-H···O, O-H···I and C-H···O hydrogen bonds link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. As can be seen from the packing diagram (Fig. 3), the molecules are stacked along the b axis. The comb-like structure depends on C-H···O hydrogen bonds. The 4-iodobenzenesulfonic acid molecules constitute the main chain and the N,N-dimethylacetamide molecules intermesh to each other as the branches.

Experimental

Addition of N,N-dimethylacetamide (1.8 ml, 0.02 mol) into 4-iodobenzenesulfonyl chloride (6.1 g, 0.02 mol) gave milkwhite solution of innersalt (Wu *et al.*, 2000). The innersalt was dissolved in acetone (20 ml) and placed in moist chamber to crystallize. The crystals were obtained by evaporating solvent slowly at room temperature for about 40 d.

Refinement

Water H atoms were located in difference syntheses and refined as $[O-H = 0.88 (9) \text{ Å} and 0.94 (9) \text{ Å}; U_{iso}(H) = 0.093 \text{ Å}^2]$. The remaining H atoms were positioned geometrically, with O-H = 0.85 Å (for OH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3. A packing diagram of the title compound, showing the formation of the supramolecular comb-like structure. For the sake of clarity, water molecules have been omitted.

N,N-Dimethylacetamide-4-iodobenzenesulfonic acid-water (1/1/1)

Crystal	data
---------	------

$C_6H_5IO_3S{\cdot}C_4H_9NO{\cdot}H_2O$	$D_{\rm x} = 1.774 \ {\rm Mg \ m}^{-3}$
$M_r = 389.21$	Melting point: 363 K
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 25 reflections
a = 14.173 (3) Å	$\theta = 10-13^{\circ}$
b = 7.7480 (15) Å	$\mu = 2.35 \text{ mm}^{-1}$
c = 13.272 (3) Å	T = 294 (2) K
V = 1457.4 (5) Å ³	Block, colorless
Z = 4	$0.30\times0.20\times0.10~mm$
$F_{000} = 768$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.0000$
Radiation source: fine-focus sealed tube	$\theta_{max} = 25.9^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.6^{\circ}$
T = 294(2) K	$h = 0 \rightarrow 17$
$\omega/2\theta$ scans	$k = 0 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 16$

$T_{\min} = 0.539, T_{\max} = 0.799$	3 standard reflections
1490 measured reflections	every 120 min
1490 independent reflections	intensity decay: none
1096 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.1045P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.162$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.07	$\Delta \rho_{max} = 1.53 \text{ e} \text{ Å}^{-3}$
1490 reflections	$\Delta \rho_{min} = -2.42 \text{ e } \text{\AA}^{-3}$
172 parameters	Extinction correction: none
4 restraints	Absolute structure: Flack (1983), 7 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.13 (10)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
I1	0.20688 (5)	0.25040 (11)	0.7328 (2)	0.0505 (3)
S	0.1876 (2)	0.9056 (4)	1.0531 (3)	0.0438 (8)
O1W	0.9586 (8)	0.1582 (19)	0.0789 (10)	0.077 (4)
H1WA	0.914 (10)	0.084 (19)	0.065 (17)	0.093*
H1WB	1.023 (7)	0.13 (2)	0.082 (15)	0.093*
01	0.1588 (10)	0.8396 (14)	1.1505 (8)	0.076 (4)
02	0.2802 (7)	0.9782 (15)	1.0512 (14)	0.094 (5)
H2A	0.2768	1.0848	1.0659	0.113*
03	0.1189 (8)	1.0230 (11)	1.0115 (8)	0.053 (2)
O4	-0.0108 (7)	0.6431 (14)	0.7131 (8)	0.060 (3)
N1	-0.0502 (9)	0.597 (2)	0.8736 (12)	0.070 (4)

supplementary materials

C1	0.1840 (9)	0.4229 (16)	0.9376 (10)	0.041 (3)
H1B	0.1756	0.3110	0.9613	0.050*
C2	0.1806 (9)	0.5632 (16)	1.0022 (10)	0.043 (3)
H2B	0.1709	0.5450	1.0706	0.051*
C3	0.1912 (8)	0.7263 (14)	0.9674 (11)	0.034 (3)
C4	0.2059 (8)	0.7609 (14)	0.8682 (12)	0.038 (3)
H4A	0.2132	0.8741	0.8461	0.046*
C5	0.2100 (8)	0.6222 (17)	0.7992 (10)	0.044 (3)
H5A	0.2188	0.6412	0.7306	0.053*
C6	0.2002 (8)	0.4547 (15)	0.8381 (10)	0.038 (3)
C7	-0.0714 (13)	0.648 (3)	0.9756 (12)	0.078 (5)
H7A	-0.1176	0.7386	0.9748	0.117*
H7B	-0.0149	0.6890	1.0076	0.117*
H7C	-0.0956	0.5509	1.0121	0.117*
C8	-0.0515 (12)	0.407 (2)	0.8500 (15)	0.073 (5)
H8A	-0.0490	0.3903	0.7784	0.110*
H8B	-0.1084	0.3562	0.8760	0.110*
H8C	0.0020	0.3519	0.8808	0.110*
C9	-0.0327 (13)	0.897 (2)	0.8184 (15)	0.072 (5)
H9A	0.0203	0.9300	0.8590	0.107*
H9B	-0.0901	0.9276	0.8522	0.107*
H9C	-0.0296	0.9548	0.7546	0.107*
C10	-0.0305 (12)	0.705 (2)	0.8017 (15)	0.062 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.0651 (5)	0.0364 (4)	0.0499 (5)	0.0024 (4)	-0.0001 (8)	-0.0136 (4)
S	0.0544 (17)	0.0296 (14)	0.0473 (17)	0.0041 (14)	-0.0096 (18)	-0.0142 (15)
O1W	0.054 (6)	0.103 (10)	0.075 (9)	0.002 (7)	0.005 (6)	-0.025 (8)
01	0.141 (11)	0.047 (6)	0.039 (6)	0.028 (7)	0.002 (6)	-0.003 (5)
O2	0.076 (8)	0.059 (7)	0.147 (13)	0.004 (6)	-0.020 (9)	-0.062 (9)
O3	0.062 (6)	0.035 (5)	0.060 (6)	0.008 (4)	-0.006 (5)	-0.011 (4)
O4	0.065 (6)	0.060 (6)	0.055 (7)	0.006 (5)	0.000 (5)	0.001 (6)
N1	0.052 (8)	0.083 (10)	0.074 (10)	-0.008 (8)	-0.016 (7)	0.003 (9)
C1	0.057 (7)	0.024 (6)	0.043 (7)	-0.009 (6)	0.001 (6)	0.000 (5)
C2	0.064 (8)	0.034 (7)	0.030 (6)	0.003 (6)	-0.006 (6)	0.003 (6)
C3	0.031 (6)	0.025 (6)	0.045 (7)	0.004 (5)	-0.002 (5)	-0.006 (5)
C4	0.049 (7)	0.017 (5)	0.048 (8)	-0.001 (5)	0.000 (6)	-0.003 (5)
C5	0.051 (8)	0.042 (7)	0.039 (7)	0.006 (6)	-0.004 (6)	-0.003 (6)
C6	0.049 (7)	0.024 (6)	0.041 (7)	-0.002 (5)	-0.002 (6)	-0.006 (6)
C7	0.082 (12)	0.101 (15)	0.051 (10)	-0.005 (11)	0.018 (9)	-0.004 (10)
C8	0.061 (10)	0.070 (11)	0.089 (13)	-0.011 (9)	0.000 (9)	0.008 (11)
C9	0.078 (12)	0.079 (13)	0.059 (10)	0.013 (9)	-0.012 (9)	-0.017 (10)
C10	0.060 (10)	0.060 (10)	0.066 (11)	-0.002 (8)	-0.018 (9)	0.009 (9)
Geometric parameters (Å, °)						

I1—C6 2.113 (12) C2—H2B 0.9300

5 02	1 420 (11)	$C_2 = C_4$	1.26(2)
S-02	1.429 (11)	$C_3 = C_4$	1.30(2)
S-03	1.441 (10)		1.413 (18)
S-01	1.449 (12)	C4—H4A	0.9300
S—C3	1.796 (12)	C5—C6	1.404 (18)
O1W—H1WA	0.88 (9)	С5—Н5А	0.9300
O1W—H1WB	0.94 (9)	С7—Н7А	0.9600
O2—H2A	0.8500	С7—Н7В	0.9600
O4—C10	1.30 (2)	С7—Н7С	0.9600
N1—C10	1.30 (2)	C8—H8A	0.9600
N1—C7	1.44 (2)	C8—H8B	0.9600
N1—C8	1.51 (2)	C8—H8C	0.9600
C1—C6	1.363 (19)	C9—C10	1.50(2)
C1—C2	1.386 (17)	С9—Н9А	0.9600
C1—H1B	0.9300	С9—Н9В	0 9600
C^2 — C^3	1 354 (17)	C9—H9D	0.9600
02×02	111 4 (2)		121.2
02 - 5 - 03	111.4(6)	C4 - C5 - H5A	121.5
02_5_01	114.4 (9)	CI = C6 = CS	122.7 (12)
03-8-01	112.0 (7)		120.8 (9)
02S	105.5 (6)	C5-C6-11	116.4 (9)
O3—S—C3	105.3 (6)	N1—C7—H7A	109.5
O1—S—C3	107.5 (7)	N1—C7—H7B	109.5
H1WA—O1W—H1WB	125 (10)	H7A—C7—H7B	109.5
S—O2—H2A	109.0	N1—C7—H7C	109.5
C10—N1—C7	123.8 (18)	H7A—C7—H7C	109.5
C10—N1—C8	118.8 (16)	H7B—C7—H7C	109.5
C7—N1—C8	117.5 (17)	N1—C8—H8A	109.5
C6—C1—C2	117.6 (12)	N1—C8—H8B	109.5
C6—C1—H1B	121.2	H8A—C8—H8B	109.5
C2—C1—H1B	121.2	N1—C8—H8C	109.5
C3—C2—C1	121.2 (13)	H8A—C8—H8C	109.5
C3—C2—H2B	119.4	H8B—C8—H8C	109.5
C1 - C2 - H2B	119.4	C10—C9—H9A	109.5
C_{2}^{-} C_{3}^{-} C_{4}^{-}	122 1 (12)	C10_C9_H9B	109.5
$C_2 C_3 S_4$	122.1(12) 120.2(11)		109.5
$C_2 = C_3 = S$	120.2(11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{4} = C_{3} = S$	117.7 (9)		109.5
$C_3 = C_4 = C_5$	118.9 (11)	H9A-C9-H9C	109.5
C3—C4—H4A	120.5	H9B—C9—H9C	109.5
С5—С4—Н4А	120.5	04—C10—N1	118.1 (16)
C6—C5—C4	117.5 (13)	O4—C10—C9	120.3 (16)
С6—С5—Н5А	121.3	N1—C10—C9	121.7 (19)
C6—C1—C2—C3	1(2)	S-C3-C4-C5	179.4 (8)
C1—C2—C3—C4	0(2)	C3—C4—C5—C6	-1.2 (17)
C1—C2—C3—S	-179.4 (10)	C2—C1—C6—C5	-2(2)
O2—S—C3—C2	114.1 (12)	C2—C1—C6—I1	180.0 (9)
O3—S—C3—C2	-127.9 (11)	C4—C5—C6—C1	2.3 (18)
O1—S—C3—C2	-8.3 (13)	C4—C5—C6—I1	-179.9 (8)
O2—S—C3—C4	-65.0 (13)	C7—N1—C10—O4	178.7 (14)
O3—S—C3—C4	52.9 (11)	C8—N1—C10—O4	-1(2)
	·· 、 /		

supplementary materials

O1—S—C3—C4 C2—C3—C4—C5	172.5 (10) 0.3 (19)		C7—N1—C10—C9 C8—N1—C10—C9		-3(3) 176.9 (14)
Hydrogen-bond geometry (Å,	°)				
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
O1W—H1WA···O2 ⁱ		0.87 (13)	1.97 (15)	2.765 (16)	151 (14)
O1W—H1WB…O3 ⁱⁱ		0.94 (10)	1.85 (15)	2.657 (16)	143 (17)
O2—H2A…I1 ⁱⁱⁱ		0.85	2.57	3.208 (16)	133
C1—H1B···O3 ^{iv}		0.93	2.46	3.378 (15)	168
C2—H2B…O1		0.93	2.52	2.925 (17)	106
C5—H5A···O1 ^v		0.93	2.55	3.192 (17)	126
С8—Н8А…О4		0.96	2.21	2.64 (2)	106
С9—Н9А…О3		0.96	2.56	3.48 (2)	161
Symmetry codes: (i) $x+1/2$, $-y+1/2$	1, z-1; (ii) x+1, y-1,	<i>z</i> -1; (iii) - <i>x</i> +	+1/2, y+1, z+1/2; (iv) x, y-	1, z; (v) - x + 1/2,	y, z = 1/2.

Fig. 2

Fig. 3